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Abstract. The Landauer-Buttiker formalism for an electronic microstructure with many 
terminals is extended to account for temperature changes in the reservoirs and heat fluxes 
in the terminals. Terminal relations are developed in the presence of an arbitrary applied 
magnetic induction field which becomes uniform in the neighbourhood of each terminal. 
They use temperature changes in the reservoirs and either chemical potential changes in the 
reservoirs or  charge fluxes in the terminals as independent variables. In both cases formulae 
for the transport matrices are  given in terms of the scattering matrix of the microstructure. 
Onsager symmetry relations and reciprocity theorems are given for electrical, thermal and 
thermoelectric configurations. The behaviour of quantum point contacts is outlined. 

1. Introduction 

In 1957 Landauer [ 13 proposed a formula for the electrical conductance of a two-terminal 
electron system. This has been expressed in a way which is convenient for many-terminal 
systems by Buttiker [2,3]. The Buttiker formalism directly relates the conductance 
matrix G to the electron scattering matrix S. The formalism has been useful for the 
interpretation of experiments on low-dimensional systems relating to universal fluc- 
tuations [4,5], Aharanov-Bohm oscillations [6], ballistic transport [7-91, the integer 
quantum Hall effect [ lo ,  111 and its quenching at low magnetic fields [12, 131. 

In this paper we derive corresponding formulae for the thermal and thermoelectric 
transport matrices which are associated with a microstructure. They are the terminal 
analogues of the local tensors describing thermopower, Peltier effect and thermal 
conductivity in bulk solids. In the macroscopic regime the local tensors determine the 
corresponding matrices via the solution of macroscopic conservation equations with 
appropriate boundary conditions. In the mesoscopic and ballistic regimes this is no 
longer the case. The thermal and thermoelectric transport matrices are controlled by 
Schrodinger’s equation and, like G ,  they may be directly expressed in terms of S. 

Universal fluctuations of thermopower have recently been measured [ 141. That 
apart, there is no current experimental data on the thermal and thermoelectric transport 
matrices of mesoscopic and ballistic systems. Nevertheless, interesting and challenging 
experiments are easily envisaged and several authors have discussed the theory of 
thermal and thermoelectric transport in microstructures. Sivan and Imry [ 151 relate the 
fluxes of charge and heat in the terminals to chemical potentials and temperatures which 
are also measured in the terminals in a particular way. Esposito et a1 [ 161 discuss universal 

0953-8984/90/224869 + 10 $03.50 @ 1990 IOP Publishing Ltd 4869 



4870 P N Butcher 

fluctuations of thermopower. Kearney and Butcher [17] comment on that problem and 
they also discuss the analogue of the Wiedemann-Franzlaw. Finally, Streda [l8] outlines 
a calculation of the thermopower of a quantum point contact. These discussions are all 
restricted to two-terminal microstructures in zero applied magnetic induction field. 

We present here a general formalism in which the thermal transport matrices are 
expressed in terms of S for a microstructure with any number of terminals which is 
subjected to an applied magnetic induction field. To do so we relate the fluxes of charge 
and heat in the terminals to chemical potentials and temperatures in the reservoirs 
feeding the terminals. Buttiker has stressed the overall utility of proceeding in this way 
in the case of electrical measurements [ 2 , 3 ] .  His arguments are easily extended to 
thermal and thermoelectric measurements. The resulting formalism may be used to 
interpret experiments in which chemical potentials and temperatures are measured in 
the reservoirs. They may also be used to interpret experiments in which these quantities 
are measured in the terminals provided that the measurement procedures are defined. 
The results of Sivan and Imry [15], for example, may be recovered by using their 
definitions. 

In the next section we remind the reader about the linear transport formalism for 
bulk solids. This familiar situation provides guidelines for the development of the 
corresponding theory for microstructures. In section 3 we outline the salient properties 
of the electron energy eigenstates in the terminals when a uniform magnetic induction 
field is present. The scattering matrix is discussed briefly in section 4. With these 
preliminaries out of the way, the many-terminal transport relations for a microstructure 
containing non-interacting electrons are easily written down in section 5 .  We initially 
given them a non-linear form which relates the fluxes of charge and heat in the terminals 
to the chemical potentials and temperatures in the reservoirs. Then we linearise the 
equations by assuming small departures from equilibrium. The formulae for the trans- 
port matrices in the linearised equations are given both exactly and as low temperature 
approximations which are particularly simple and instructive. 

In the general linear analysis it is convenient to use the changes of the chemical 
potentials and temperatures in all the reservoirs as independent variables. However, 
the fluxes are all controlled by differences of these quantities and the total fluxes of charge 
and heat into the microstructure both vanish. In section 6 we use these observations to 
simplify the terminal relations. The simplified equations have the advantage that it is 
possible to invert them so as to use the charge fluxes in the terminals as independent 
variables instead of the changes of the chemical potentials in the reservoirs. This is 
analogous to what is usually done in bulk solids. In section 7, we discuss Onsager 
symmetry and reciprocity in electrical, thermal and thermoelectric configurations. 
Finally, in section 8, we outline the behaviour of quantum point contacts and indicate 
some ways in which the theory might usefully be extended. 

2. Local relationships in bulk solids 

In bulk solids, linear transport theory is summarised in expressions for the fluxes of 
charge J and heat Q in terms of the EMF E and the temperature gradient V T  [19,20] 

J = uE -+ L V T  

Q = ME + N VT.  

( la)  

(1b) 
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In these equations both E and VT are supposed to be sufficiently small and slowly- 
varying for a quasi-static, linear approximation to J and Q to be appropriate. The 
coefficients in (1) are the conductivity tensor a and thermoelectric and thermal transport 
tensors L, M and N. They have the Onsager symmetry properties [20,21] 

a( - B )  = @ ( B )  P a )  

L(-B)  = -M(B)/T (2b) 

N( -B)  = N(B). (2c) 
in a magnetic induction field B where Tis  the absolute temperature and P denotes the 
transpose of a matrix P. Equation (2) is a consequence of the time-reversal symmetry of 
the underlying equations of motion of the particles in the solid [21]. 

Equation (1) is the theoretician’s form of the local transport equations. Exper- 
imentalists prefer to replace E by Jas an independent variable. Then (1) may be arranged 
in the form 

E =pJ + SVT 

Q = T T J - K V T  

where 

are respectively the resistivity, thermopower, Peltier and thermal conductivity tensors. 
These are the quantities which are usually measured in bulk solids. We see from (2) that 
they have the Onsager symmetry properties 

P(-B) = P(B) 

S( - B )  = ?i(B)/T 

K (  - B )  = K(B). 

3. The electron states in the termina., 

We follow Buttiker [2,3] and suppose that free electrons with effective mass m* enter 
the microstructure through ideal terminals in the form of long, straight electron wave- 
guides. To discuss the energy eigenfunctions in a particular terminal it is convenient to 
introduce a local Cartesian coordinate system, Oxyz, with Oz parallel to the axis of the 
terminal and z increasing towards the microstructure. The one-electron Hamiltonian is 
then 

1 

H = + eA)* + V(x ,  y )  
2m * 

where A is the vector potential and V ( x ,  y )  is the potential energy field confining the 
electrons in the terminal. 
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We suppose that the local magnetic induction field B is uniform and choose A = 
(- B,y, 0, Bxy - B+) so that H does not involve 2. Then the energy eigenfunctions take 
the form 

q,k(x, y, 2 )  = e-''z exp(ikz)q,k(x, y) 

&,k = E,(k) + h2k2/2m*. 

(7a) 

(7b)  

with energies 

In (7a) e is the length of the terminal considered and a labels the normalised transverse 
eigenfunctions q L Y k  ( x ,  y ) .  These are determined, together with the transverse energies 
E,(k), by the 2~ Schrodinger equation 

Hqek(x,y) = Ewkqwk(X,y) (8) 
in whichp, = hk. 

To quantise k we introduce periodic boundary conditions over the terminal length 
4.  Then we may verify that the diagonal matrix element (aklu,lak) of the longitudinal 
velocity operator U ,  = (p, + eA,)/m* is equal to the group velocity u,k = fi-' de,,/dk 
(cf [20]).  Moreover, the density of states N,, per unit energy range per unit length of the 
terminal is Nak = (n d&,k/d k)-' when we introduce a factor 2 for spin degeneracy. 

Hence 

N,k(aklv,lak ) = 2h-'. (9) 

The elegance of the Landau-Buttiker formalism is due to this simple fundamental result. 
In the above discussion we use a particular gauge to make the treatment transparent. 

However, the essential results are all gauge invariant. Thus, suppose that we change to 
a new gauge in which the vector potential becomes A = A + Vx. Then qek is replaced 
by Vwk exp(-ieX/fi) and a and k may still be used to label the eigenfunctions. It is, 
therefore, easy to verify that &,k, Nnk, the diagonal matrix element of the longitudinal 
velocity operator and the fundamental result (9) remain the same in the new gauge. 

4. The scattering matrix 

The terminal transport relationships all involve the scattering matrix S evaluated at 
some value E of the one-electron energy. In this section we outline the definition of S 
and discuss its symmetry properties. 

The case in whichB +. 0 in the terminals is well known [ 2 , 3 ] .  Then E,(k) = E ,  which 
is independent of k.  We see from (7b)  that the channels (i.e. eigenfunctions) with E ,  > E 
are evanescent and decay to zero away from the microstructure. In the asymptotic 
regions of the terminals we are therefore concerned only with the propagating channels 
with E,  < E. Equation (7b) determines Ikl for each propagating mode and we may 
identify an incident wave with k = /kl and u,k = hlkl/m* and a reflected wave for which 
both these quantities are negated. The general case in which B # 0 in the terminals is 
similar but more complicated because E,(k) in (7b)  depends on kin a way which involves 
the detailed structure of the terminals. Nevertheless, there are still evanescent channels 
which may be ignored and propagating channels with incident and reflected waves for 
which we write k = k,  and k = k, respectively. They are distinguished by the sign of 
U,k, > 0 and U,k, < 0. 
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In the general case it is convenient to write the wave function in the asymptotic 
regions of the terminals in the form: 

q = [ a , ( e / u , k , ) 1 ’ 2  q c r k ,  -k bw ( e / l U ~ k r l ) 1 ’ 2  q ) n k , ] *  (10) 
11 

In (10) we have generalised the interpretation of a: it now labels a channel in any of the 
terminals and the sum ranges over the propagating modes in all the terminals. The 
square root factors have been introduced to give a convenient normalisation to the 
coefficients a ,  and b, of the incident and reflected waves. Their contributions to the 
longitudinal particle flux t - l ( q l u z l q )  are simply la,12 and - /bel2 respectively. 

The scattering matrix S determines the relation imposed by the microstructure 
between the coefficients a = {a,} of the incident waves and the coefficients b = {b,} of 
the reflected waves. We write the relation in the form 

b = Sa (11) 

where a and b are column matrices. Since particles are conserved we must have (with 
thenormalisationintroducedabove) lbI2 = la12foralla. HenceSisunitary,i.e. S-’ = Si-. 
Another important symmetry property of S follows from the time-reversal symmetry of 
Schrodinger’s equation for the entire microstructure at energy E .  The Hamiltonian has 
the form (6) with A now describing the entire applied magnetic field B(r )  and V ( x ,  y )  
replaced by the entire potential energy field V ( x ,  y ,  z ) .  Now suppose that B(r )  is reversed 
everywhere by changing the sign of A .  The new wave function for the entire system 
is the complex conjugate of the old one. Consequently, since complex conjugation 
interchanges incident and reflected waves, we have the time-reversal symmetry 
property: S ( - B )  = [ S - ’ ( B ) ] * .  Finally, when this property is combined with the unitary 
character of S we obtain the reciprocity relation S( - B )  = S ( B )  [ 2 , 3 ] .  

5. General terminal transport relations for microstructures 

The terminal transport relations involve real quantities. The scattering matrix enters 
into them through the real matrix T of transmission and reflection probabilities with 
elements 

Tu, = IS,l2. (12) 

We see by inspection that TUP is the probability that an electron incident in channel /3 
will appear in channel a, when a # p,  or will be reflected in channel p when a = p. The 
reciprocity relation for S which is derived at the end of section 4 implies that T is 
transposed when the magnetic induction field is reversed, i.e. 

T,/A-B) = T,p(B). (13)  

Moreover, the unitary nature of S may be exploited easily to show that 

TUP = T,, = 1. 
01 P 

We make extensive use of (13) and (14) in sections 6 and 7. 
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Following Buttiker [2,3] and Sivan and Imry [ 151 we suppose that the occupation 
probabilityf,(E) of the incident wave in channel a is given by a Fermi-Dirac function: 

fa(&> = {expt(e - P,)/kBT,I + 11-l (15) 

where p, is the chemical potential and T, is the temperature. Then the total charge flux 
towards the microstructure in channel CY is 

J ,  = -e d&f,(~"k,)(hk,/i) + e C  I dEfg(eNPk,)(UPk,/e>T,p I P 

- - - e-1 5 1 dEfor,p (16a) 

where we have used (9) and 

= (2e2/h) ( a m p  - T,p). (16b) 

Similarly, to obtain the total heat flux Q,flowing towards the microstructure in channel 
a we have only to divide J ,  by -e and insert a factor ( E  - pa) in the integrand of ( 1 6 ~ ) .  
Thus we obtain 

In (16) it is left understood that a and p always refer to propagating channels. 
To linearise (16) we put 

,U, = p - eV, (17a) 
and 

T ,  = T -  ea 
where eV, and 8, are small perturbations of the chemical potential and temperature in 
channel a from equilibrium values p and T which are common to all channels. Then 

f ,  - f o  +f;l[eV, - ( E  - P / V , I  (18) 
where fo is given by (15) with p, = p and T,  = T and f b  is the energy derivative off , .  
(Minus signs have been used in (17) to enhance the analogy between the transport 
relations for microstructures and bulk solids). When (18) is substituted into (16)fo makes 
no contribution to J ,  and Q, because of (14). Hence we obtain 

J, = c (G#, + L,@,) (19a) 
P 

where 

1 
= -- J d&fbr,p(E - U) - Loe7T&p 

eT 

M C p  = - T L ,  = -L,eT2r& 
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1 r  

with Lo = ( ~ k , / e ) ~ / 3  denoting the Lorenz number [ 191. In each equation in (20) the first 
formula is exact. The second formula is the leading term in a Sommerfield expansion at 
low temperatures [ 19,201 in which Tap and its energy derivative r:, are evaluated at E = 
P.  

6. Simplification of the terminal transport relations for a microstructure 

The similarity between the terminal relations ( 1 9 )  and the local relations ( 1 )  is obvious. 
However, some care is needed in developing the analogy. The Greek subscripts in (19) 
label propagating channels. We are more interested in terminals. Each terminal may 
contain several propagating channels which are all fed from a common reservoir so that 
they have common values of V,  and 8,. Moreover, only the total fluxes of charge and 
heat in each terminal are accessible to measurement. To allow for these facets of the 
microstructure problem we have only to re-interpret a and /3 in (19) as terminal labels 
and replace Tap in (20) by 

where the summation is over all propagating channels a' in terminal a a n d  p' in terminal 
/3. Then the terminal relations may be written as matrix equations: 

J = G V + L 6  

Q = MV + NO. (22b) 
In (22) ,  with N,  denoting the number of terminals, J ,  Q,  V and Q are N ,  X 1 column 
matrices with elements J,, Q,, V,  and 8, respectively. The elements of the N ,  X N ,  
square matrices G ,  L, M and N are defined by (20) and (21).  

Equations (22) may be further simplified because (14) and (20) show that the rows 
and columns of all the transport matrices in them sum to zero. The first property reflects 
the fact that J and Q are determined only by differences of the terminal voltages and 
temperatures. The secorw property reflects the fact that 

XJ, = c e,  = 0 
U (Y 

because of particle conservation. We are therefore free to choose terminal N ,  as a 
reference (ground) terminal at which we set V h  ~ = Oh.', = 0. Moreover, we have no need 
to calculate JN, and QN, because they may be determined subsequently from J ,  and Q, 
in the other terminals. 

To take these observations into account we have only to remove the N,th row and 
column from all the matrices in (22).  We leave this operation understood. The reduced 
form of (22) gives a result closely analogous to the theoretician's form (1) of the local 
transport equations. Moreover, it has the advantage that G now has an inverse R = G-' 
so that we may rewrite the equations as 

V = R J + S 8  (23a) 
Q = nJ - KO (23b) 
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which are the analogues of the experimentalist’s form (3) of the local transport relations. 
The (Nt  - 1) X ( N ,  - 1) matrices R, S, ll and K in (23) are given in terms of those in the 
reduced form of (22) by (4) with G and R replacing U and p respectively. 

7. Onsager symmetry and reciprocity 

The Onsager symmetry of the matrices in (19), in the reduced forms of (22) and in (23) 
are all dictated by (13). Together with (16b) this equation implies that Tap( - B )  = Tpiy(B) .  
Consequently, all the matrices in (19) and (22) are transposed when the’ magnetic 
induction field is reversed. Thus the Onsager symmetry relations (2a) and (2c) survive 
intact in the microstructure while (2b) is replaced by L( - B )  = C(B) .  Equation (20c) also 
implies that M = - T L in the microstructure so that we may recast this simple symmetry 
relation in a more complicated form which is analogous to (26): L(-B)  = - M ( B ) / T .  

The Onsager symmetry relations ( 5 )  all survive intact in a microstructure. In general 
(5b) cannot be simplified like (2b) because R,  which replaces p in (4), does not commute 
with L and M. However, in a two-terminal network all the transport matrices in (23) 
reduce to scalars and we have the simple relation ll = - T S  in which both II and S are 
even functions of B .  

Electrical reciprocity is discussed by Buttiker [2,3]. It rests on the Onsager symmetry 
relation (2a) with a replaced by G. We give a simpler treatment which is easily extended 
to deal with thermal and thermoelectric reciprocity. Thus we set 8 = 0 in the reduced 
form of (22a). Then, we have 

V(  -B)J(B) = V(  -B)G(B)V(B) = V(B)G(B)V(  - B )  = V(B)J(  - B ) .  (24) 
Here V ( * B )  is related to J ( t B )  by (22a) in magnetic induction fields k B  but are 
otherwise arbitrary. In the second line of (24) we transpose the scalar product and in the 
last line we use G ( B )  = G( - B ) .  

Let us consider a two-terminal network. When terminal 2 is grounded (24) gives 

v1 ( - B ) / J ,  ( - B )  = v1 (BWl ( B )  (25) 
i.e. the two-terminal resistance is an even function of B .  Now consider a four-terminal 
network. When terminal 4 is grounded (24) gives 

Suppose that, in the magnetic induction fields + B  and - B ,  we connect an ideal voltmeter 
between terminals 1 and 2 and between terminals 3 and 4 respectively. Then, for +B 
we have J,(B) = J2(B) = 0 and for -B  we have J 3 (  - B )  = J4(  - B )  = 0 so that charge 
conservation givesJ,(B) = -J,(B). Hence (26) reduces to 

V , ( - B ) / J d - B )  = ( V m  - V2(B) ) / JdB)  (27) 

i.e. 

R12,34(-B) = R 3 4 . 1 2 W  (28) 
in the notation of Buttiker [2, 31. Here: denotes a four-terminal resistance which 
is determined by measuring the voltage drop from y to 6 with an ideal voltmeter (which 
draws no current) and dividing it by a current which enters through LY and leaves through 
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0. Equation (28) expresses the electrical reciprocity theorem: Rap,VP is unaltered when 
the current source and voltmeter are interchanged provided that B is reversed [ 2 , 3 ] .  

Since N(B)  and K(B)  have the same Onsager symmetry as G(B) we may immediately 
write down analagous reciprocity relations for thermal ‘resistances’ measured when V = 
0 or J = 0 by using a heat flux source and an ideal temperature meter which draws no 
heat flux. Similarly, since L(B) and M(B)  also have the same Onsager symmetry as G ( B ) ,  
we may also write down analagous reciprocity relations for thermoelectric ‘resistances’ 
measured (when V = 0) by using a current source and an ideal temperature meter which 
transmits no charge flux and measured (when 8 = 0) by using a heat flux source and an 
ideal voltmeter which transmits no heat flux. These relationships are not readily tested 
experimentally. Most importantly: when J = 0, which is the usual situation in ther- 
mopower measurements, no four-terminal reciprocity exists because S( - B )  # S ( B ) .  In 
the two-terminal case, however, all the transport matrices, including S, reduce to scalars 
which are even functions of B .  

8. Conclusion 

The transport relations in the general form (19) ,  in the reduced form of (22) ,  or in the 
alternative form (23) ,  all give a complete description of the linear electrical, thermal 
and thermoelectric transport properties of a microstructure. The formulae (20) and (21) 
for the transport matrices are exact when the microstructure contains independent 
electrons which do not have any phase-breaking interactions with another system, e.g. 
phonons. They have the transparent simplicity which is characteristic of the Landauer- 
Buttiker formalism. Nevertheless, evaluating the formulae is complicated when there 
are many terminals. 

We confine our attention here to some brief remarks about the low temperature 
behaviour of ideal quantum point contacts which have only two terminals and very 
simple scattering properties [7,8]. An electron which is incident in terminal 1 is either 
totally reflected or is totally transmitted to terminal 2. Hence we see from (16b) that 
rll = (2e2/h)Nc where N ,  is the number of transmitted channels. Hence, (20) and (21) 
predict the staircase structure for GI1 which has been observed [7,8]. More importantly, 
we may immediately derive the Wiedemann-Franz law K~~ = LoTGll from (20), (21) 
and (4) so that K ~ ,  is expected to show similar behaviour. Finally, as Streda has pointed 
out [18] equations (20) ,  (21) and (4) also imply that Sll will exhibit negative peaks which 
are associated with the steps in Gll .  The shape of the peaks has been calculated by 
Cantrell and Butcher in another connection [22]. Experimental studies of the thermal 
and thermoelectric behaviour of quantum point contracts would therefore be of great 
interest. 

The theory developed here puts the formulae for the thermal and thermoelectric 
matrices of a microstructure with many terminals on the same footing as those for the 
conductance matrix. For simplicity we have ignored spin-splitting, spin-orbit coupling 
and the effects of periodic crystal fields. Further development of the formalism is 
required to take account of these effects. The incorporation of electron-phonon coupling 
would greatly enhance the scope of the theory. Finally, and most importantly, thermal 
and thermoelectric measurements on microstructures with more than two terminals 
present an interesting experimental challenge. 
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